
526 CHEMISTRY: EYRING AND REE PROc. N. A. S.

36 DeMars, R. I., "The production of phage-related materials when bacteriophage development
is interrupted by proflavine," Virology, 1, 83 (1955).

37 Ledinko, N., "Production of noninfectious complement-fixing poliovirus particles in HeLa.
cells treated with proflavine," Virology, 6, 512 (1958).

38 Franklin, R. M., "The synthesis of fowl plague virus products in a proflavine-inhibited tissue
culture system," Virology, 6, 525 (1958).

39 Murakami, W. T., H. Van Vunakis, and L. Levine, "Synthesis of T2 internal protein in
infected Escherichia coli, strain B," Virology, 9, 624 (1959).

40 Horne, R. W., S. Brenner, H. P. Waterson, and P. Wildy, "The icosahedral form of adeno-
virus," J. Molec. Biol., 1, 84 (1959).

41 Burnet, F. M., and P. E. Lind, "A genetic approach to variation in influenza viruses. 4.
Recombination of characters between the influenza virus A strain NWS and strain of different
serological subtypes," J. Gen. Mlicrobiol., 5, 67 (1951).

42 Fraenkel-Conrat, H., and R. C. Williams, "Reconstitution of active tobacco-mosaic virus
from its inactive protein and nucleic acid components," these PROCEEDINGS, 41, 690 (1955).

43 Ginsberg, H. S., and M. K. Tixon, "Deoxyribonucleic acid (DNA) and protein alterations in
HeLa cells infected with type 4 adenovirus," J. Exp. Med., 109, 407 (1959).

44 Ginsberg, H. S., and M. K. Dixon, "Nucleic acid synthesis in types 4 and 5 adenovirus
infected HeLa cells," J. Exp. Med., 113, 283 (1961).

45 Hershey, A. D., "Nucleic acid economy in bacteria infected with bacteriophage T2: 11.
Phage precursor nucleic acid," J. Gen. Physiol., 37, 1 (1953).

SIGNIFICANT LIQUID STRUCTURES, VI. THE VACANCY THEORY
OF LIQUIDS

BY HENRY EYRING AND TAIKYUE REE
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Communicated February 2, 1961

The liquid state is stable in a temperature range intermediate between that of
solid and vapor. Usually, the liquid density is also intermediate. Exceptional
substances such as water involve a structural shrinkage superposed on the usual
expansion of the solid to liquid transition. It is natural to seek an explanation
of the intermediate liquid state as an intimate mixture of solid and vapor. All
the imperfections of the solid state should be even more abundant in the liquid.
However, those imperfections which yield a large ratio of entropy increment to
enthalpy increment will be correspondingly more abundant in the liquid and will
be the significant structures in a quantitative theory.

The Liquid Model.-Holes of molecular size are assumed overwhelmingly abun-
dant because (a) they confer gas-like properties on a neighboring molecule jumping
into the hole and (b) a solid-like molecule obtains a positional degeneracy equal
to the number of neighboring vacancies. Neglecting increase in volume due to
holes of other than molecular size, the number of holes per mole of molecules is
(V - V8)/V8, where V and V8 are the molal volumes of liquid and solid, respec-
tively. The chance that a vacancy confers gas-like properties on a neighboring
molecule is assumed proportional to the fraction of neighboring positions populated
by molecules. This fraction is V8/V if molecules and vacancies are randomly
distributed. Thus, for random distribution of vacancies, the mole fraction of gas-
like molecules is (V8/V) (V - V8)/V8 = (V - V,)/V. The remaining mole
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fraction, VT/ V, of molecules 6
are solid-like. The specific Cv of Argon
heat at constant volume for a 0

liquid such as argon should \
08thus be well represented by the .

equation

C= V 6 + ( - 3.V'3l theory
v. v

4 - obs.
(1)

This is seen to be the case in
Figure 1. This estimate of
the number of solid-like and 80 90 100 no 120 130 140 150
gas-like molecules was initi-
ated by Walter and Eyring' in TO K
1941. FIG. .--Specific heat of argon at constant volume
The average number of plotted as a function of temperature. Circles represent

vacancies next to a molecule observed values. The curve is a plot of equation (1).
if vacancies are randomly dis-
tributed is then

Z(V-VV,) (ZVS V - V, n(V-V) (2)
v kvlV's.

Here Z is the number of nearest neighbors and (V - V,)/V is the fraction of the
neighboring positions occupied by vacancies. Since most simple liquids approxi-
mate a close-packed structure at the melting point, Z should have the value 12
and VS/V is about 0.9 so that one expects n -- 10.8, which is the value which best
fits the thermodynamic data for argon. It is natural to suppose that of the pos-
sible positions available to a molecule some one is energetically favored over the
others by the way the neighbors are organized about it. This difference in energy
between the best position and the average for the neighboring available positions
should be proportional to the energy of sublimation, E., ahd inversely proportional
to nh, the number of holes; -i.e. it should have the value aE,/nh = aE,,V,/(V - V,).
Figure 2 illustrates the energetic situation for a solid-like molecule comparing the
most favored position with a neighboring vacancy.

It is now possible to write down the partition function, f, for a mole of rare gas
such as argon

/ ES/RT V- - aEaVit NV8e / -V8 (V-V,)RT V-
{ e-111T1 + n V8 e

X {(2,mkT)V-2 VN)}N(VV) {(N(V- V8))!}

Using Stirling's approximation X! = (X/e)X, this becomes

x)E {
RlTV- (v-V)RT-- V h /2 eV)N(V_ V8)eIR ____ EV N'e{ (27rkT) e" -V,
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Here N, 0, Ty m, k, and h are Avogadro's
number, the Einstein characteristic tem-
perature of the solid, absolute tempera-
ture, mass of the molecule, Boltzmann's
constant, and Planck's constant, respec-

E tively. The other quantities have been

I/1iaEs defined and the form of the partition
i___nh function is determined -by the model.

The only constant not fixed by the model
is a. The value of a required to fit the
data is in accord with expectations that
the energy for a molecule to move to a

Distance neighboring vacancy be.small compared
FIG. 2.-Potential curve for a molecule with the energy of sublimation, E8.

occupying the most favored position as corm- In Table 1, the values obtained by
pared with a neighboring vacancy. *g2Fuller, Ree, and Eyring for the proper-
ties of argon using equation (4) are found. In this table, V, AS, P, and T represent
molal volume in cc, the entropy of phase change, pressure in atmospheres, and
temperature in degrees Kelvin. The subscripts m, b, and c indicate the melting
point, boiling point, and critical point, respectively; A(%) is the percentage devi-
ation of the calculated from the observed values.

TABLE 1
PROPERTIES OF ARGON

Vm, cc ASm, eu Pm, atm Vb, CC ASb, eu Tb, OK Tc, OK VC, cc Pc, atm
Caic 28.90 3.263 0.732 29.33 19.04 87.29 149.7 83.68 52.93
Obs 28.03 3.35 0.674 28.69 17.85 87.29 150.66 75.26 48.00
A (%) +3.11 -2.61 +8.55- +2.22 +6.68 0 -0.637 +11.2 +10.3

n = 10.80 a = 0.00534 E, = 1888.6 cal/mol
V8 = 24.98 cc 0 = 60.00K

It should be stressed that our theory does not regard the liquid state as a mixture
of solid and gas. A molecule has solid-like properties for the short time it vibrates
about an equilibrium position, then it instantly transforms to gas-like behavior as
it jumps into the neighboring vacancy. It is well known that nucleation of bubbles
in boiling and crystal nucleation in freezing, if uncatalyzed, are very slow processes.
These facts show that no solid or gaseous molecular arrangement as large as these
nuclei exists in the liquid state.
' Theory of Molten Salts.-The observed percentage change in volume of argon upon
melting is 12 per cent. It is interesting to compare the theoretically expected vol-
ume change accompanying the melting of salts with the observed values as listed
in Table 2.

Evidently the expansion of molten salts upon melting is about twice that of argon.
$ This is to be expected from our theory. The entropy of melting comes from the

TABLE 2
VOLUME CHANGES AT THE MELTING POINTS

NaCl KCI NaBr KBr
Liquid volume (cc) 37.74 48.80 44.08 56.03
Solid volume (cc) 30.19 41.57 36.02 48.05
Per cent change 25.0 17.4 22.4 16.6
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randomness introduced by vacancies. Since positive ions can occupy only half
the vacancies while negative ions can occupy the other half, it should require twice
the percentage expansion to get the same entropy increase for each kind of ion.
This is in accord with the observations. The fact that only half the extra volume
(V - Vs) provides vacancies for each kind of ion means that n in the degeneracy
term, n(V - V.)/ V8, should be only about half as large for salts as for argon. This
too is in accord with the findings, as one sees below.
The energy of vaporization for liquid argon (see equation (4)) falls off as (EV.)/V,

that is, inversely as the volume, as van der Waals suggested for gases long ago.
This is not true for the molten salts since in one -of the three dimensions, a Na+
and Cl- cling together and there is expansion only in the other two dimensions.
Thus the energy should fall off more nearly inversely proportional to V32.
.Such considerations provide the justification for the following partition function

used by Carlson, Eyring, and Ree3 for molten salts.

{exp E,/2RT(V/V.)) 1 V - V, e aEsV-(V/V#)1/ )}2NV
(1 8e1T)3V + n (V-V.)RT V

f(27rmkT)" eV 8Tr2IkT 1 N(V-Vs)
Xl h3 N h2 1- Vh5kT

The results found by Carlson et al.3 for KCl are shown in Table 3. The properties
in the gas-like part of the partition function are for the molecule of KCl.

TABLE 3
PROPERTIES OF FUSED KC1

Tm, OK Vm, cc ASm, eu Tb, OK Vb, cc ASb, eu Tc, OK Vc, cc Pc, atm
Calc 1023 49.06 5.40 1684 71.20 21.63 3092 432 135.5
Obs 1049 48.80 5.8 1680 23.1
A () -2.6 +0.53 -6.90 +0.24 -6.36

n = 6 a = 0.03000 Es = 54.15 kcal/mol
Vs = 41.57 cc 0 = 1700K I = 2.195-10-8gm Cm2
c = 305 cinm

Our vacancy liquid theory applies with equal faithfulness to molten metals if we
recognize that the necessary vacancies need only be large enough to accommodate
the ion stripped of the valence electrons and these ions are only about a third the
volume of the atom. That the viscosity data indicate that the ions in liquid
metals maneuver as though they were independent of their valence electrons was
pointed out long ago.4 Thus, metals expand upon melting roughly one third as
much as argon. Taking this into account by choosing values of n about three times
as large as for argon and allowing 'for both atoms and diatomic molecules in the
gas-like part of the partition function, the same faithful representation of thermo-
dynamic and transport properties for the metals is obtained.5 Again, our model
seems to be powerfully supported.

Surface Tension.-The partition functions for liquids used in this and earlier
papers of the series reduce to the solid partition function when V. = V and to
the gaseous partition function for V »> Vs. It is therefore to be expected that such
a partition function will represent the surface layer if proper account is taken of the
density gradient. For a simple closepacked liquid such as argon, it 'is supposed
that layers will orient so that a molecule tends to have six nearest neighbors in the
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same layer, three neighbors below and three above. Only E8, the bulk energy of
sublimation, should be appreciably different for a surface and a bulk molecule. The
energy E,1 of a molecule in the ith surface layer is then given by the equation

E-= E (G6 Pi +±3 Pi+1 3 Pi- (6)

128lPi 12 pi - 12 pi
Here pi is the density of the ith layer and the subscript increases with depth in the
liquid. When i is the top liquid layer and i - 1 the first gas layer, one can write

pi-1p- xp EI T
7i-i/P = expP{2RT Tc)(

This corresponds to a molecule in the top liquid layer possessing 6 nearest neigh-
bors in the same plane, 3 in the neighboring liquid plane, but none in the gas layer
at low temperatures. A molecule in the first gas layer, on the other hand, has.only
the three neighbors in the first liquid layer with none in the same gas layer nor in
the gas layer above. Thus, the extra binding energy of a molecule in the first liquid
layer over one in the first gas layer corresponds to six more neighbors out of a
possible twelve or an extra binding energy of ES/2. In keeping with this result,
the exponent of equation (7) reduces to E8/(2RT) at low temperatures and vanishes
at T = T, as it must since the densities become equal at the critical temperature.
One now proceeds to calculate the Gibbs free energy per mole, Gi = Ai + pVi,

by an iterative process until self-consistency is achieved. For the surface layer,
one can first guess the density pi and then set Pi+1 provisionally equal to the density
of bulk liquid.

Now after plotting A i against V
(cf. Fig. 3), the molal volume V1

A of surface liquid can be obtained
from the curve and is compared
to Vi corresponding to the as-
sumed value Pi. When, after re-

A G peated attempts, assumed and
2\ calculated values of Vi agree, one

can recalculate AG1 for the layer
AdsI i, etc. The whole procedure

Vs Ve must continue until all assumed
v~~V and calculated values of the den-

sity are self-consistent. The sur-
FIG. 3.-Schematic diagram of the Helmholtz free facetension, isten

energy, A, plotted against volume at a fixed tempera- face tension, a, is then
ture for a bulk liquid (curve 1) and for a surface _ _(
layer (curve 2). A\Gj is the extra Gibbs free energy 0.9165 VYs1/
per mole of surface as compared with the bulk liquid. Yz= LAGi V (8)

Vi N

The quantity 0.9165 (V8/N) "" is the volume of a layer of solid lattice one square
centimeter in area.

In Table 4, observed and calculated values of the surface tension of argon are
given following Chang, Eyring, Ree, and Matzner.6

In Table 4, the columns give the temperature Kelvin, molal volume of the top
liquid layer, molal volume of the vapor, percentage of the surface tension calculated
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TABLE 4
SURFACE TENSION OF ARGON (DYNE/CM)

T0K Vi, cc Vo. cc 1st, % 2nd, % 3rd, % Calc Obs a, %

83.85 28.90 10,208 87.16 12.84 0 13.78 13.5 +2.09
85.5 29.08 8,493 86.45 13.55 0 13.43 13.1 +2.52
87.29 29.33 6,944 85.87 14.13 0 13.02 12.6 +3.33
90.0 29.80 5,246 85.35 14.65 0 12.22 11.9 +2.69

for the first, second, and third liquid layers, the calculated surface tension, the ob-
served surface tension, and the percentage discrepancy. This is another striking
success for the vacancy liquid theory. Values for other liquids are to be found in
the paper of Chang et al.6
The calculated densities of successive layers in the neighborhood of the surface

were calculated for argon and are plotted in Figure 4.

1.4

1.2 3
o 83.55°K(Tm)
0 85.5 K

1.0 Q 87.29 K (Tb)
*90. 0 K

~0.8
Q.

> 0.6

e liquid transition zone gas

Q4

0.2

0.0 I I I
L 2 1 0 9

layers normal to surface

FIG. 4.-The density change in going from the liquid phase
through the transition layers in the gas phase for argon at four
temperatures.

Viscosity.-The vacancy theory of liquids has implicit in it a general theory of
transport properties. - Since there are solid-like and gas-like degrees of freedom in
the liquid, both must be taken-into account in calculating the viscosity. We follow
the procedure outlined in the paper by Fuller, Ree, and Eyring (to be published).
The shear plane lies between two molecular layers. If a fraction, x8, of the shear
plane is covered by solid-like molecules and the remaining fraction, xa, by gas-like
molecules, then the viscosity, -1, which is the ratio of shear stress, f, to rate of strain,
~,is
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f xsJ, + xJfa Vs v- Vs
5 5 Sv~~~878 + Xn n.X + fig. (9

f_x~f8+xJ = X17 ± X77 = 7 +VV (9)S~ V V
In accord with earlier procedure,7 we now calculate the viscosity of solid-like
molecules, 7. We can write

f f/ X cos A fX2X3X cos 0i
X1=7 - = cos01X exp 2kT

_ 1X fX2X3X cos2 01VP - Zki COs O0 + 2kT (10)

In Equation (10), & is the rate of shear corresponding to the velocity with which
one molecular layer slips over the other divided by Xi, the distance between layers

(cf. Fig. 5). ki is the frequency of
X23 jumping into the ith neighboring

X2Z17 f - empty lattice site forf = 0. When
f is not zero, the work helping the

(~\ ('\ (~> (~> molecule move forward is the force
\+}kt])t J ) ) fX2X3 multiplied by the component of

X | B y '-' the distance to the top of the barrier
(X cos 01)/2. Thus the rate of
jumping into the ith site is ki exp
(f~A2X3X cos Oi/2kT) and the corre-
sponding distance jumped is X cos 0i,
so that IAX cos OAk1 exp (fX2X3X cos
0i/2kT) is the velocity of the mol-

X ' ecule due to all jumps into neigh-
FIG. .5.-Distances between molecules in a liquid. boring empty sites. Expanding

X is the distance between two successive equilibrium
positions for viscous flow. the exponential gives the last form

in equation (10). Since the sites are
randomly distributed over the solid angle, the first term in the summation of equa-
tion (10) has the value 2iki cos 01 = 0 and the second term

fX2X3X fX2X3X
E kifk cos2 as = (Zki) * (11)2kT 6kT

Here we have used the fact that the average of cos2 0 over space is 1/3.
According to our vacancy liquid theory, a solid molecule can jump into all neigh-

boring empty sites, so that

(Zki) kTn(V - V,,) (1-e-/e7) exp - (Va- V8)RT
h Vs8 ~,

In equation (12), we have supposed the activation energy is a'E8V,/(V- V8) in
accordance with Figure 2 and that the partition function for normal and activated
states cancel out in the rate expression except for the reaction coordinate where the
partition function for the normal state introduces the factor (1 -e- /T). Using
Equations (11) and (12) to simplify (10) gives:
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Xjh exp { a'E8V8/(V - V)RT }
*7a = (X2X2X3/6)K(1 - e0/T)n(V - 17)/V8 (13)

The term 77, is taken as the expression for gas viscosity

= /3nmc-, (14)
where -?zis the number of molecules per cc, m is the molecular mass, c is the average
and X is the mean free path. Using kinetic theory considerations, this becomes

2
re= 3 r'ds (mkT)V, (15)

where d is the molecular diameter. If we take X2X2X3/X1 = V,/N, and substitute
equations (13) and (15) into equation (9), the result is:

Nh 1 6 V8 a'E8V8 V - V8 (2mkT)'/2
-01T -exp +2-V (1 - e/T) nK V -V8 (V - V8)RT V 3 7/2d2

(16)

If we apply equation (16) to argon, we get the results shown in Table 5. The
calculated values, q(calc) I, II, and III were obtained from equation (16) by as-
suming the following three sets of values of a' and K, respectively: a' = 0, K =

TABLE 5
VISCOSITY OF ARGON IN MILLIPOISES

T, -K V, cc ,,(obs)* ,,(calc)It ,,(calc)LIt (calc)IIIt
84.26; 28.25t 2.82 2.82 2.82 2.82
86.25 28.59T 2.62 2.57 2.33 2.45
86.90 28.69* 2.56 2.51 2.22 2.35
87.30. 28.73T 2.52 2.49 2.17 2.32
90.00 29.15 2.32 2.32 1.86 2.08
99.5 30.49 1.62 1.77 1.16 1.42
110.0 32.74 1.37 1.53 0.88 1.13
120 34.43 116 1.07 0.58 0.77
127 36.31 1.00 0.89 0.47 0.63
133.5 39.16 0.77 0.73 0.38 0.51
138.7 42.04 0.70 0.59 0.31 0.414
143 45.39 0.63 0.49 0.26 0.35
147 51.21 0.56 0.38 0.22 0.28
149 57.08 0.50 0.31 0.20 0.24
* Zhadanova, N. F., Soviet Phys. J.E.T.P., 4, 749 (1957).
t Calculated from equation (16), see the text.
t These-values were obtained by interpolating the data from the International Critical Tables, ed. E. W. Wash-

burn (New York: McGraw-Hill, 1926). For other volume data, refer to Zhalanova, op. cit.

0.42; a' = 0.01014, K = 1; and a' = a = 0.00534, K = 0.662. One may see that
the values of v (calc) I agree better than those of II and III. However, the value,
a' = 0, is problematical, since the activation energy for flow, a'E8V,/(V- V8),
should be equal or greater than the energy, aE8V8/(V - V8), which is necessary for
a molecule occupying a neighboring vacancy (cf. Fig. 2). Thus, in the calcula-
tions of -q (calc) III, a value of a' which equals a (= 0.00534) was assumed and
K (= 0.662) was determined so as to fit the viscosity at 84.25°K, whereas in the
column of v (cale) II, K was assumed to be unity and a' (= 0.01014) was deter-
mined. Both the v (calc) II and III decrease too rapidly. If one considers, how-
ever, that the temperatures in Table 5 range nearly from the melting to the critical
temperatures and that the viscosities are at various vapor pressures from about 7Q.
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to 48 atmospheres, it must be said that the agreement of i7 (calc) II and III with
experiment is quite satisfactory. Our treatment of the viscosity of gas-like degrees
of freedom as equal to the viscosity for a perfect gas can certainly be improved.

It is of interest to compare the above calculation of viscosity resulting in equation
(16) with earlier procedures. Formerly the gas-like contribution to viscosity was
neglected and the whole liquid treated as the relaxation of a lattice structure. This
is a reasonable approximation near the melting point but becomes less appropriate
with rise in temperature. The other improvement adopted here is the more ex-
plicit form that can now be written for the rate constant, k', for the stress relaxa-
tion. The fact that in the current expression the fluidity is proportional to the
number of holes n(V - V8)IV, provides justification for a somewhat analogous
relation found by Batschinski.8 It is especially satisfactory that our viscosity
equation for the liquid passes over naturally into the gas equation. The present
liquid theory also suggests that since V - V8 becomes zero for the solid, the solid
should become very viscous and further that nonequilibrium dislocations and
vacancies must be chiefly responsible for the plasticity shown by solids. In earlier
papers from this laboratory, a theory of the bulk viscosity of ordinary liquids9
and of polymers'0 was developed. The authors used the earlier type of rate ex-
pression which did not explicitly include the factor, (V - V8)/V8, corresponding
to the number of holes adjacent to a molecule. According to our present model of
the liquid, the bulk viscosity should be the same as the shear viscosity except for a
change in the meaning of the transmission coefficient, K. For the bulk viscosity, K,
should express the chance that when a molecule jumps into a hole, the abandoned
hole transforms into an elastically expanded lattice, a phonon, which then travels
with the velocity of sound.
Any relaxation process involves a rate constant, k' = K(kT h) (F*/Fn) exp (-C0/

ET), which has as one factor the ratio of the partition function for the activated
state to the partition function for the normal state. If temperature or pressure
brings a change in viscosity through modifying the partition function, F,,, for the
normal state, the result is said to be due to a change in liquid structure. Such a
structure change appears as a change also in the thermodynamic properties of the
liquid. On the other hand, a similar change in viscosity may result from a change
in the partition function, F* exp (- EolkT), of the activated complex, and this is not
reflected in the thermodynamic properties of the liquid. Thus, the development
of the partition function of the liquid to explain thermodynamic properties is the
necessary preliminary for deducing from viscosity the properties of the activated
state. As a result of this study, we arrive at the picture of molecules of simple
liquids shifting position chiefly by using vacancies and less frequently by making
use of dislocations or fractional sized holes.

Diffusion. A great deal of experimental evidence indicates that liquids sub-
jected to stress relax by the same mechanism regardless of the nature of the stress.
Thus, the activation energy for either ionic diffusion or conduction is ordinarily
equal to the activation energy for viscous flow, indicating that the same elementary
reactions are involved. Self-diffusion and viscous flow likewise show the same
activation energy and therefore involve the same elementary process.

Consider the relationship between viscosity and diffusion. The diffusion
coefficient is defined following Fick by the equation
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dcii= -D = uici. (17)
dx

Here J, is the current density of matter of kind i. Di, ui, and ci are the diffusion
coefficient, velocity, and concentration of the ith kind of matter. In Figure 6, we
have drawn a typical cross section of a condensed phase
normal to the direction of flow. We suppose that mol-
ecule 7 diffuses upward by randomly jumping past the 3 -
six articulating sectants 1 to 6. This is a necessary "i
assumption, since the activation for shear mechanism
is involved in diffusion. Now the rate of shear is 5~ C

S = u/Xi, (18) -

where u is the forward velocity of molecule 7 with re-
spect to its neighbors. Further,

71i = fi/5A (19) FIG. 6.-Hexagon normal
to the direction of self-dif-

where fi, the shear stress, is the driving force on mol- fusion of molecule 7 in a close-
ecule7divided by the sum, Ai, of the six shear areas

packed liquid. Molecule 7 isecule 7 divided by the sum, As~, of the six shear areas 1 diffusing forward.
to 6, that is, Ai = 6 X2X3 or, for the most general pack-
ing, when instead of 6 there are 4 neighbors, As = NXX3 (see Fig. 6). Equations (18)
and (19) are the relations which have been used in deriving (10).
Now for diffusion, the force on a molecule

d dFi = y=_d(kT In as + Asi)
dx dx

=-kTdlna= dlna 1 dci (20)
dx dln ci) cidx

Here Ai, /.oi, and a2 are the chemical potential, the chemical potential at unit con-
centration, and the activity as of the ith component. Also, we have

f1=F1/A1= dT(n ai) 1 dci 21
fis=FLIAXi Tdni1 o (21)(X2X3 d In c c dx

Combining equations (18), (19), and (21) with (17) yields

Di-X,kT dlIna, kT dIn a2 (22)
DXA3=?i d ln cf t(V/N) i/3 d In c (2

Equation (22) may be used to calculate the diffusion coefficient of argon at 84.12'K,
here ai = ci. We take t = 6, V = 24.98 cc, and Zhadanova's value" for the vis-
cosity, v1 = 2.82 X 10-3 poises. This gives D = 1.98 X 10-$ cm2 sec-' as com-
pared with Corbett and Wang's observed value'2 D = 2.07 X 10 5-cm2 sec-'.
An alternative procedure in deriving equation (22) is to follow Einstein in equat-

ing the Stokes hydrodynamic viscous drag on a sphere,'3

Fi = 67rriu Or + 3-X (23)O~r + 3-q
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to the thermodynamic drag, equation (20). The resulting equation is solved for u,
which when introduced into equation (17) leads to

kT dIn a (fr+2\D = -dn r+3 (24)
6 7rr77 d In c flr + 377

All the quantities except #, the coefficient of sliding friction, have been defined
previously. 3 is the coefficient by which the relative velocity of two neighbors in
contact must be multiplied to give force per unit area. If there is no slip at the
interface, i.e. A is very large, the denominator in equation (24) is 67rrfl, while if
(3 = 0, the denominator becomes 47rr-. 47rr is the circumference of the circle drawn
through the centers of the molecules 1 to 6, while t(V/N) 1/3, which plays the same
role in equation (22), is the sum of the lengths of the straight lines which form the
closed polygon joining the centers of the molecules 1 to 6. Equation (22) gives an
excellent account not only of self-diffusion but also of mixed diffusion in uncompli-
cated cases.'4 The significant structure method with its recourse to absolute rate
theory for treating relaxation problems has obvious advantages over hydrodynamics
because of the limited number of models having tractable hydrodynamic solutions.
This is exemplified by the calculation of the viscosity of a high polymeric system
for which it is necessary to treat the random walk of a group of connected
segments. 15 Onsager"6 has written an interesting review of theories of diffusion.
The significant structure model also gives a very satisfactory account for liquids

of the coefficients of expansion, of compressibility, and therefore of CP.'7 The
thermal conductivity K1 of liquids is represented rather well by an equation, K, =
K8V8/V + Kg(V - V,)/V, as shown by Walter Davis in a thesis in this laboratory.
Here the subscripts 1, s, and 9 on kappa indicate liquid, solid, and gas, respectively.
That such a simplified model of the liquid state should represent thermodynamic
and transport properties with the accuracy shown above is amazing. The signif-
icant structure method thus provides a new point of departure for treating all types
of pure liquids and solutions.

Certain refinements of our theory are indicated:
1. Hole-hole interactions should be treated explicitly.
2. Dislocations, fractional-sized holes, stacking faults, and structures of the

type discussed by Bernal"8 are sufficiently abundant to eliminate long-range order.
3. The long-range order which Debye finds in the critical region should appear

as a consequence of a complete liquid theory.
4. Where there is pronounced structure change upon melting, as in the case of

water, the values of E,, V8, and 0 must be appropriately modified.
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Introduction and Results.-An engineer is frequently faced with the problem of
optimizing a design to obtain a minimization of total operating costs. The writer
has found that in an important class of such problems the desired minimum can
be found directly without recourse to the laborious procedure of first solving for
the optimum value of the parameters and then substituting back into the cost
equation or to the soulless operation of a machine which gives numerical answers
but no insight. The purpose of this note is to present this direct solution.

In the class of problems to which the present technique is applicable, the opera-
tion cost C is expressed as a polynomial of the independent parameter. The
technique is restricted, however, to the case where the polynomial contains one
more term than the number of independent parameters. Thus, if we denote our
parameters by X1, X2, ...xq, we are to minimize the cost

n

C(x1, X2, ... Xa) = E T,

where Tj = ai I xjfii,
j=1

and where we have the restriction n = o + 1.

The first step in our technique is to find a product of our n terms, each raised
to an appropriate exponent aj, which contains none of our o- parameters. This
product we write as

n

H Tawi = K
j=1

Such a set of a's is unique, apart from a common factor. In order to render the
a's completely unique, we impose a normalization condition

n

Zaxi= 1.
=1


